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Abstract

Detecting that two images are different is faster for highly dissimilar images than for highly

similar images. Paradoxically, we showed that the reverse occurs when people are asked to describe

how two images differ—that is, to state a difference between two images. Following structure-

mapping theory, we propose that this disassociation arises from the multistage nature of the compari-

son process. Detecting that two images are different can be done in the initial (local-matching) stage,

but only for pairs with low overlap; thus, ‘‘different’’ responses are faster for low-similarity than for

high-similarity pairs. In contrast, identifying a specific difference generally requires a full structural

alignment of the two images, and this alignment process is faster for high-similarity pairs. We

described four experiments that demonstrate this dissociation and show that the results can be

simulated using the Structure-Mapping Engine. These results pose a significant challenge for

nonstructural accounts of similarity comparison and suggest that structural alignment processes play

a significant role in visual comparison.

Keywords: Structural alignment; Perceptual comparison; Same-different judgments; Structure-

mapping; Alignable differences

Similarity plays an important role in cognitive science, both as an empirical phenomenon

in its own right (e.g., Hahn, Chater, & Richardson, 2003; Markman & Gentner, 1993;

Tversky, 1977) and as a component of other cognitive processes. Similarity processes have

been implicated in categorization (e.g., Goldstone, 1994; Hampton, 1997; Medin & Schaffer,

1978; Nosofsky, 1984), induction (e.g., Osherson, Smith, Wilkie, Lopez, & Shafir, 1990;

Sloman, 1993), memory retrieval (e.g., Gentner, Rattermann, & Forbus, 1993; Gillund &

Shiffrin, 1984; Ross, Perkins, & Tenpenny, 1990), problem solving (Bassok, 1990; Gick

& Holyoak, 1980, 1983; Novick, 1988; Ross, 1989), and decision-making (e.g., Medin,

Goldstone, & Markman, 1995; Tversky & Kahneman, 1981). Accordingly, much attention

has been devoted to developing psychological models of the processes underlying similarity

judgments.
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Yet, despite the centrality of similarity processing, there is no general agreement as to

how to model it. One reason for this is the lack of agreement on how concepts are repre-

sented in the mind. For example, Tversky’s (1977) classic contrast model assumes represen-

tations composed of independent features. Another prominent class of models assumes

high-dimensional spatial representations (e.g., Shepard, 1974). A third class of models

assumes structured representations and accords a central role to aligning these representa-

tions in similarity processing (Gentner, 1983; Gentner & Markman, 1997; Holyoak &

Thagard, 1989; Hummel & Holyoak, 1997; Larkey & Love, 2003). In this paper, we exam-

ine the psychology of difference detection as a way of distinguishing among these compet-

ing models of similarity. We suggest that models that include structural alignment can best

account for the phenomena.

We first draw predictions from structure-mapping theory (SMT), in which difference

detection is an integral part of similarity processing. Then we compare its predictions with

those made by other classes of models. According to SMT (Falkenhainer, Forbus, &

Gentner, 1989; Gentner, 1983, 2003; Gentner & Markman, 1993, 1994, 1997; Markman &

Gentner, 1993), comparing two things involves a process of structural alignment. The align-

ment of two representations goes beyond the identification of shared features; it also

requires finding correspondences between the relations that connect the features. Because

structure-mapping postulates that similarity involves an alignment of representational struc-

ture, it naturally predicts a psychological distinction between alignable differences and

nonalignable differences. Alignable differences are differences that occupy corresponding

positions in their respective relational structures; they emerge when the two representations

have been aligned. For example, in Fig. 1, the black circle in A versus white center circle in

B constitute an alignable difference. Nonalignable differences are differences that do not

occupy corresponding roles (or between items that cannot be aligned). In Fig. 1, if we com-

pare A and C, the lion in C is a nonalignable difference, as is the black center in A.

An important prediction of SMT—and one central to the logic of this paper—is that alig-

nable differences are in general more salient than nonalignable differences.1 This follows

from the more general claim that comparing two things makes their common structure more

salient. Indeed, phenomenologically, alignable differences often seem to pop out. For exam-

ple, in Fig. 1, the alignable difference between the top two figures (A and B) stands out

immediately, whereas the nonalignable differences between A and C do not. This is advan-

tageous in that alignable differences (by definition) are more relevant to the common causal

or perceptual structure that is the basis for the comparison. But it leads to the rather paradox-

ical prediction that it should be easier to notice differences for high-similarity than for low-

similarity pairs. There are two reasons for this within SMT. First, high-similarity pairs are

easier to align than low-similarity pairs (as amplified below); and once two representations

are aligned, the alignable differences stand out. Second, high-similarity pairs have larger

common systems than low-similarity pairs and thus more slots for alignable differences.

Structure-mapping theory thus predicts that difference identification should be faster for

high-similarity pairs than for low-similarity pairs. We test this claim in this paper.

While there has up to now been no evidence on the relative speed of detecting differ-

ences between alignable versus nonalignable pairs, there is evidence from both conceptual
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and perceptual comparisons for the two related claims—(1) that alignable differences are

more salient than nonalignable differences; and (2) that differences are easier to detect for

high-similarity pairs than for low-similarity pairs. Using a speeded-difference task,

Gentner and Markman (1994) gave participants a page full of word pairs and asked them

to find a difference between as many pairs as possible in a brief time period. Participants

identified differences for many more high-similarity pairs than low-similarity pairs, and

this surplus was chiefly made up of alignable differences. Applying this framework to

perceptual comparison, Markman and Gentner (1996) gave participants image pairs and

asked them to list either differences or commonalities. Again, participants listed more

differences for highly similar images than for less similar ones, and again, this surplus was

made up of alignable differences. Finally, Gentner and Gunn (2001) asked people to

compare word pairs and write a commonality, and then gave them a speeded-difference

task. As in the prior two studies, participants generated more differences (mostly alignable

differences) for high-similarity than for low-similarity pairs. In addition, they generated

more (alignable) differences for the previously compared pairs than for new pairs, showing

the specific connection between alignment and difference-noticing. According to structure-

mapping, the above findings stem from the related facts that (a) alignable differences are

faster and easier to note than nonalignable differences (in general), and (b) high-similarity

(A) (B)

(C) (D)

Fig. 1. Sample stimuli from Experiment 1. Images in the same row represent high-similarity pairs; images in

the same column represent low-similarity pairs.
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pairs are easier to align than low-similarity pairs, as amplified below. Together these lead

to the prediction that difference-identification will be faster for high-similarity than for

low-similarity pairs.

On the face of it, this prediction seems at odds with a venerable body of research on

same-different judgments. A well-established result is that the more similar two images are,

the more difficult it is to identify that they are different (e.g., Farell, 1985; Goldstone &

Medin, 1994; Luce, 1986; Posner & Mitchell, 1967; Tversky, 1969). That is, the more simi-

lar two things are, the more time people require to say ‘‘different’’ (and the more likely they

are to erroneously identify the pair as ‘‘same’’). This result runs in the opposite direction

from the prediction that people will be faster to identify differences in similar images than

in dissimilar ones. For example, in Fig. 1, people should be faster to say ‘‘different’’ for pair

AC than for pair AB; yet they should be faster to identify a specific difference for pair AB

than for pair AC.

This disassociation poses problems for traditional accounts of similarity, as discussed

below. But structure-mapping can resolve this apparent contradiction. As noted above, SMT

readily predicts the greater ease of difference-identification for high-similarity than for

low-similarity pairs. To draw predictions for the same-different task from structure-

mapping, it is useful to review the alignment process as modeled by the Structure-Mapping

Engine (SME) (Falkenhainer et al., 1989; Forbus, Gentner, & Law, 1995). Fig. 2 provides

an overview of the three stages of this process (see also Gentner & Markman, 1997):

1. All possible local identity matches between elements in the two representations are

made in parallel,2 regardless of whether they are mutually consistent.

2. The local matches are coalesced into a set of structurally consistent connected

structures (called kernels).

Fig. 2. Diagram showing the three stages of structural alignment in SME.
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3. The kernels are merged, beginning with the largest and deepest kernel3 and adding

others that are structurally consistent with it. This results in one or a few large,

structurally consistent global mappings between the representations. The global map-

ping reveals both commonalities and alignable differences between the two representa-

tions. (At this stage, candidate inferences may also be projected from one

representation to the other, but this will not concern us here.)

The reason that high-similarity pairs are faster to align than low-similarity pairs (Gentner

& Kurtz, 2006) is that in high-similarity pairs, the initial matches are largely mutually consis-

tent: the object-property matches support the relational matches, and the relational matches

are consistent with each other. Because most of the matches are compatible, this typically

results in a dominant large, well-structured kernel, which is much larger (in terms of its struc-

tural evaluation) than the next-largest kernel. This means that the greedy merge process only

needs to run once.4 For low-similarity pairs, there are typically many small kernels, and the

final merge step may require comparing two or more different orders of merging. Thus, the

merge stage takes longer for low-similarity than for high-similarity pairs (assuming equal-

sized representations). To use an analogy, a literal similarity match is like a wide highway

with no branchpoints, whereas a low-similarity match is a set of faint criss-crossing paths.5

Given this alignment process, the prediction for the difference-identification task is

straightforward. Because alignable differences emerge only from the global mapping, the

process must proceed to the end. This means that whatever speeds up alignment will also

speed difference-identification. Thus, difference-identification should be faster for high-sim-

ilarity than for low-similarity pairs. To make predictions for the same-different task, con-

sider first the high-similarity case. For high-similarity pairs, the same alignment process just

described takes place; once the global mapping is made, a difference will be apparent and

the ‘‘different’’ response can be made. But in the low-similarity case, a full alignment is not

needed. For highly dissimilar pairs, there will be very few initial local matches (relative to

the size of the representations). Since the possibility that two images are identical can be

ruled out without proceeding further (Markman & Gentner, 2005), a quick ‘‘different’’

response can be made in the first stage. So in the same-different task, low-similarity pairs

will yield faster ‘‘different’’ responses than high-similarity pairs, because only the latter

require a full alignment process.

Structure-mapping theory therefore predicts that the two tasks will show opposite patterns

with respect to similarity. For the same-different task, which permits a shortcut for very dis-

similar images, participants should be faster to respond ‘‘different’’ for dissimilar than for

similar pairs. Thus, in Fig. 1, they should be faster to say ‘‘different’’ for pair A and C than

for the highly similar pair A and B. In contrast, for the difference-identification task, which

always requires aligning the images, participants should be faster to respond to similar than

to dissimilar pairs. Because pair A and B share a common organizing structure (as well as

many features), the alignment process should be easy and fast, causing the alignable differ-

ence between them (the color of the central circle) to leap out. It should take longer to iden-

tify a difference between A and C (the two leftmost images), which have only minimal

alignable structure.
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If this predicted reversal is obtained—that is, if participants are faster to recognize that

two images are different for low-similarity pairs but faster to identify a difference for high-

similarity pairs—it will pose significant challenges for two prominent classes of models of

perceptual similarity. Both feature-intersection models and mental distance models account

very naturally for the finding that people are faster and more accurate to say ‘‘different’’ for

very different pairs than for rather similar pairs. However, they also most naturally predict

the same pattern for difference-identification. The greater the number of differences

between two objects, the easier it should be both to detect that they are different and to iden-

tify a specific difference between them.

In feature-intersection models (e.g., Tversky, 1977; see Navarro & Lee, 2004; for a com-

parison of several different feature-intersection models) objects are represented by sets of

independent features. Similarity between objects is increased by shared features and

decreased by distinctive features. The reverse applies when computing a difference judg-

ment; two objects are more different the greater their number of distinctive features. Thus,

the greater the number of distinctive features, the easier it should be to detect that two

objects are different, and the easier it should be to identify a distinctive feature. For instance,

in Fig. 1, it should be easier both to distinguish A from C (because they are different in sev-

eral features) than A from B (because they vary on only a single feature); and the large num-

ber of distinctive features should also make it easier to identify differences between A and

C than between A and B.

In mental distance models (e.g., Nosofsky, 1984; Shepard, 1974; Shoben, 1983) similar-

ity is modeled as the inverse of the distance between points within a multi-dimensional men-

tal space. Relative positions within this space can then be used to measure how different the

two objects are from one another. The farther apart two points are within the space, the eas-

ier it should be both to detect that they are different and to find specific differences in

dimensional values between them. Thus, people should be faster for the dissimilar pair A

and C than for the similar pair A and B for both tasks.

1. Plan of experiments

The prior research has used very different materials and response measures for the two

tasks. In the present studies, we equated the tasks as far as possible. We used the same mate-

rials—pairs of images—for both tasks, and the same dependent measure, response times.

Experiments 1 and 2 test whether the predicted disassociation between same-different

responding and difference-identification occurs in human perceptual comparison. In Experi-

ment 1, we gave participants pairs of structured images and asked them either to perform a

same-different judgment or to identify a particular difference. In Experiment 2, we general-

ized the findings to more complex and naturalistic images. Experiment 3 tests an alternative

account of the findings, and Experiment 4 tests a further prediction from structure-mapping

theory. With these results in hand, we then present a computer simulation of both tasks,

using the SME in combination with a sketching system that permits automatic encoding of

perceptual materials.
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2. Experiment 1

In Experiment 1, we designed a highly controlled set of materials in which similar pairs

differ on a single, salient, feature while dissimilar pairs differ on a multitude of salient fea-

tures (see Fig. 1). One group of participants carried out a same-different task (S ⁄ D) and the

other performed a difference-identification task, in which they were to type out a specific

difference between the two images.

Structure-mapping theory predicts that the two tasks will show opposite patterns with

respect to similarity. For the S ⁄ D task, participants need only complete the first stage of the

alignment process to determine that the dissimilar images are different, and should therefore

be faster to make a ‘‘different’’ judgment for these than for similar ones. However, because

the difference-identification task requires aligning the images, participants should be faster

to respond to a similar pair than to a dissimilar one. A third prediction is that response times

should be longer for the difference-identification task than for the S ⁄ D task. This third pre-

diction is less telling than the other two, because (a) it does not differentiate structure-

mapping from other models of comparison and (b) the result could simply stem from the

fact that the difference-identification task requires verbalization. Nonetheless, failure to find

this pattern would be problematic for our account.

2.1. Method

2.1.1. Participants
Forty-four undergraduate students at Northwestern University were randomly assigned to

the two conditions: 24 to the S ⁄ D condition and 20 to the difference-identification condition.

2.1.2. Materials
The materials were 60 images designed in the likeness of heraldic shields. Forty of the

images were pairs of highly similar and alignable images. In these high-similarity pairs, the

two images differed in a single design element (e.g., the crest, a central component, etc.).

These 20 pairs were then combined into groups of two pairs, such that the images of one pair

would be highly dissimilar to the images of the other pair (see Fig. 1). An independent group

of 14 raters provided similarity ratings on these image pairs. All participants rated the high-

similarity image pairs (M = .82) as more similar than the low similar image pairs (M = .38).

For each group, half the participants viewed the two high-similarity pairs (e.g., A&B, C&D)

and the other half viewed the two low-similarity pairs (e.g., A&C, B&D). The remaining 20

images were used to create 20 pairs of identical images (‘‘same’’ pairs). Each participant saw

10 high-similarity pairs and 10 low-similarity pairs, as well as the 20 ‘‘same’’ pairs.

Finally, 10 further pairs (5 identical and 5 non-identical) consisting of arrangements of

geometrical forms were used for training.

2.1.3. Procedure
The experiment was presented by computer. Participants read the instructions, completed

a training phase, and then went on to the main task, presented in two blocks of equal length.
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For both groups, the presentation of each pair was preceded by a half-second fixation period

during which a crosshair appeared at the center of the screen. In the S ⁄ D task, participants

received 20 pairs in each block (half same and half different). For each image pair partici-

pants performed a same-different judgment (i.e., identical or non-identical) by pressing the

left or right control key (with left-right assignment counterbalanced). The time between the

onset of presentation and the response was recorded.

For the difference-identification task, participants received only the 20 different pairs (10

in each block). For each image pair, participants pressed the space key after identifying

a difference. The image pair then disappeared and the participant typed in the response. The

time between the onset of presentation of an image pair and participants’ pressing the space

bar was recorded.

2.2. Results and discussion

Only correct ‘‘different’’ responses were used in the analysis. This excluded approxi-

mately 6.5% of the ‘‘different’’ responses. The mean results are shown in Fig. 3. As pre-

dicted by structure-mapping theory, the two tasks showed opposite patterns: participants

were faster to make a ‘‘different’’ judgment for low-similarity pairs than for high-similarity

pairs but were slower to identify a difference between low-similarity pairs than between

high-similarity pairs.

The median response time for each of the two types of experimental pairs was calculated

for each participant and the results were analyzed using a repeated-measures anova of

Task(between-s) · Similarity(within-s).6 This analysis confirmed the predicted interaction

between task (S ⁄ D judgment vs. difference-identification) and similarity (high-similarity vs.

low-similarity), F(1,42) = 16.41, MSe = 1.07, p < .001, g2 = .25.

Fig. 3. Results of Experiment 1 (error bars represent the standard error of the mean).
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Additionally, we found the predicted main effect for task (F(1,42) = 78.85, MSe = 7.34,

p < .001, g2 = .78; Msame-different = 1.00, Mdifference-identification = 6.15). There was also a

main effect of similarity (F(1,42) = 7.07, MSe = 1.07, p < .05, g2 = .10). Planned compari-

sons revealed that the observed performance differences in response time across similarity

levels were reliable for both tasks (one-tailed paired-samples t-tests; S ⁄ D judgments,

t(23) = 11.48, p < .001, d = 2.41; difference-identification, t(19) = 3.02, p < .01, d = .68).

An item anova also showed an interaction between task and similarity (F(1,76) = 16.07,

MSe = 1.45, p < .001, g2 = .016) and a main effect of task (F(1,76) = 431.80, MSe = 1.45,

p < .001, g2 = .30) and similarity (F(1,76) = 6.99, MSe = 1.45, p < .05, g2 = .005).

2.2.1. Difference listings
Our prediction of faster response times for high-similarity pairs in the difference-identifi-

cation task is based on the idea that (a) it is faster and easier to align high-similarity pairs

than low-similarity pairs; and (b) alignable differences emerge naturally when a pair is

aligned (Markman & Gentner, 1993). This reasoning also predicts that participants should

provide more alignable differences for high-similarity than for low-similarity pairs. To test

this, we examined all the differences participants noted for the 20 pairs of similar images

and 20 pairs of dissimilar images—a total of 400 differences (18 of which were non-usable)

(see Fig. 4). Following Markman and Gentner’s (1993) coding system, we coded a differ-

ence as alignable if (a) it mentioned contrasting (aligned) properties of the two images (e.g.,

‘‘one has black center and the other has a white center’’) or (b) it included an explicit com-

parative construction (e.g., ‘‘the left image has a darker diagonal’’). All other differences

were considered nonalignable differences, including simple negation of one item’s property

Fig. 4. Sample differences listed in Experiment 1 for alignable pair and nonalignable pair.
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as applied to the other (e.g., ‘‘one has a dragon, the other does not’’). As expected, partici-

pants gave more alignable differences for the similar image pairs (67%) than the dissimilar

ones (56%), v2(1) = 5.39, p < .05.

The results bear out the predictions of structure-mapping theory: Participants were faster

to distinguish two images when they were dissimilar, but slower to identify a specific differ-

ence between them. Also as predicted, participants listed more alignable differences for

similar than for dissimilar pairs.

3. Experiment 2

The results so far are consistent with the predictions of structure-mapping theory. Identi-

fying specific differences was fastest for high-similarity (highly alignable) pairs, even

though detecting that a pair was different was faster for low-similarity pairs. At this point

one might be tempted to grant structure-mapping the laurels, since it readily predicts the

task disassociation that feature models and multidimensional spatial models cannot. How-

ever, before drawing such a conclusion, we need to ask whether the results will generalize

from the rather artificial materials of Experiment 1 to more naturalistic materials. A particu-

lar concern is the fact that the high-similarity pairs differed in only one feature, whereas the

low-similarity pairs differed in many features. Defenders of feature-intersection models

could argue that people were slow to generate a difference for the low-similarity pairs not

because they were hard to align, but because of the need to select from many possible differ-

ences. A similar argument applies for the multidimensional space models. In other words,

the high-similarity advantage resides in decision processes, not in alignment processes.

Experiment 2 aims to replicate the previous results using more naturalistic stimuli. We

used sketches of plants taken from the Dover series (Harter, 2008), which are more complex

and variable than the materials of Experiment 1. These have the key advantage that the

high-similarity pairs (and the low-similarity pairs) differ in several features. Another advan-

tage in terms of generalizing the phenomenon is that their encoding is more likely to draw

on real-world knowledge; for instance, the identification of an image as a flower contributes

to the identification of its parts as petals, whereas the same parts might be identified as

leaves in an image of a bush.

In addition, we equated the time allotted for examining the pairs between the two tasks.

Rather than having the pair stay on the screen until the participant responded, we presented

the image pairs on the screen for 1,500 ms. Participants could respond at any time after the

pair was presented. For both groups, response time was measured from stimulus onset until

the first key press.

3.1. Method

3.1.1. Participants
Eighty undergraduate students at Northwestern University were randomly assigned to the

two conditions: 40 to the S ⁄ D condition and 40 to the difference-identification condition.
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3.1.2. Materials
The materials were 60 detailed drawing of plants, organized into sets of four as for the

previous experiments. Forty drawings were used for the experimental stimuli. As shown in

Fig. 5, each drawing belonged to both a high-similarity pair and a low-similarity pair. Simi-

larity ratings were collected as in Experiment 1; all 14 independent raters rated the high-

similarity image pairs (M = .27) as more similar than the low-similarity pairs (M = .54).

Participants saw each drawing only once (in either a high-similarity pair or a low-similarity

pair). Twenty additional drawings were used to create 20 ‘‘same’’ pairs. The pattern of pre-

sentation for the drawings followed that of Experiment 1. Most notably, each participant

saw 10 high-similarity pairs and 10 low-similarity pairs.

3.1.3. Procedure
The procedure for Experiment 2 was similar to that for Experiment 1. However, images

were displayed for a fixed period of 1500 ms after which they disappeared. Participants in

the S ⁄ D condition were presented with a blank screen until they made their decision, while

participants in the difference-identification condition were presented with a prompt asking

them to type a difference. Response time was measured from the onset of the presentation

of the images. For participants in the S ⁄ D condition, response time was measured from the

onset of presentation of the images until they made their choice by pressing the appropriate

key. For participants in the difference-identification condition, response time was measured

from the onset of presentation of the images until the first key press of their response.

(A) (B)

(C) (D)

Fig. 5. Sample stimuli from Experiment 2. Images in the same row represent high-similarity pairs; images in

the same column represent low-similarity pairs.
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3.2. Results and discussion

Only correct responses were included, resulting in the exclusion of 4.0% of the responses

in the S ⁄ D task. Again, both predictions were upheld: (1) high-similarity pairs were faster

than low-similarity pairs in the difference-identification task; and (2) low-similarity pairs

were faster than high-similarity pairs in the same-different judgment task (see Fig. 6). As

before, the median response times for participants by condition were analyzed using a

repeated-measures anova of Task (between-s) · Similarity(within-s). As predicted, there

was a main effect of task (F(1,78) = 29.47, MSe = 1.41, p < .001, g2 = .27; Msame-different

= .84, Mdifference-identification = 1.86) and an interaction between task and similarity,

F(1,78) = 17.3, MSe = .3, p < .001, g2 = .17. There was also a main effect of similarity

(F(1,78) = 8.33, MSe = .3, p < .01, g2 = .08).

Planned comparisons revealed that the observed performance differences in response

time across similarity levels were reliable for both tasks (one-tailed paired-samples t-tests:

S ⁄ D judgments, t(39) = 3, p < .01, d = .49; difference-identification, t(39) = 3.6, p < .01,

d = .58).

An item anova also showed a reliable interaction (F(1,76) = 18.07, MSe = .064,

p < .001, g2 = .072) and main effects of task (F(1,76) = 152.55, MSe = .064, p < .001,

g2 = .60) and similarity (F(1,76) = 6.13, MSe = .064, p < .05, g2 = .024).

Experiment 2 replicated the results of the previous experiments. Participants find it easy

to identify differences between two highly alignable images, but difficult to decide that these

two images differ. Furthermore, this result does not appear to depend on the amount of time

participants spend looking at the image pairs, but rather depends on whether a pair of

images is alignable.

Fig. 6. Results of Experiment 2 (error bars represent the standard error of the mean).
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Importantly, both the high-similarity and low-similarity pairs differed in several ways.

Thus, these results argue against a possible alternative interpretation of the results of the first

two studies. In Experiment 1, the high-similarity pairs differed in only one feature, while

the low-similarity pairs differed in many. Thus, the finding of the predicted disassocia-

tion—specifically, the longer time for low-similarity than for high-similarity in the differ-

ence-identification task—could have resulted from the need to select among candidate

differences for the low-similarity, but not the high-similarity, items. The finding that the

same pattern holds even when multiple differences exist for both kinds of pairs is evidence

against this interpretation. Of course, it could still be argued that there are more potential

differences for the low-similarity items than for the high-similarity items, and that this dif-

ference accounts for the difference in response time, depending on one’s assumptions about

how selection time varies with number of candidates. Therefore, in Experiment 3, we

adopted a different technique to try to rule out the selection argument.

4. Experiment 3

The results so far are consistent with SMT’s prediction that difference-identification

should be faster for high-similarity than for low-similarity pairs. But as just discussed, the

response time for low-similarity pairs could be inflated by the need to select from among

many potential differences. To rule out an explanation based on greater selection time, in

Experiment 3 we adopted a precuing method7 in which participants were told which differ-

ence to look for in advance for each pair. The images were arrays made up of six simple

shapes, each a different color (see Fig. 7). Prior to seeing a pair of images, participants were

shown a black shape (say, a square). Then the pair of images was shown. The task was sim-

ply to respond whether the two squares were the same color, by pressing the ‘‘same’’ key or

the ‘‘different’’ key. Half the pairs were highly similar in their spatial structure (and hence

alignable) and the other half were dissimilar in spatial structure (and hence nonalignable).

In each pair, all shapes other than the target shape were identical to each other (in color as

well as in shape).

This design removes the selection problem: Participants are told exactly which difference

to look for and in any case only one shape will differ in color in the ‘‘different’’ pairs. Thus,

the response time for low-similarity pairs cannot be inflated by the need to select from sev-

eral potential differences. Nonetheless, SMT predicts faster responding for high-similarity

pairs, because they are easier to align. When the overall arrays are aligned, the differently

colored targets will constitute an alignable difference and will pop out to participants. This

prediction is particularly interesting because aligning the arrays is purely optional here; the

task only requires attending to the precued shape.

To summarize, if we find the same pattern of responding as in Experiments 1 and

2—namely, longer response times for low-similarity than for high-similarity pairs—then

this will be strong evidence for structural alignment processes in perceptual comparison. If,

on the other hand, the results of Experiments 1 and 2 are due to differential selection time,

then no such difference should be observed in Experiment 3.
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4.1. Method

4.1.1. Participants
Sixty undergraduate students at Northwestern University participated. The design was

within-subject (except for counterbalancing), with two factors: Alignability (High ⁄ Low)

· Color of Target Shapes (Same ⁄ Different).

4.1.2. Materials
The materials were 48 images, each composed of six geometrical shapes surrounded by a

frame. Within each image, all six shapes were of different colors. These images were

divided into 16 groups of three (triads) (see Fig. 7). Within each triad all of the images used

the same six shapes. For each triad, one of the constituent shapes was selected as the target
shape. In the ‘‘same’’ condition, the target shapes were the same color; in the ‘‘different’’

condition, the target shapes differed in color. For each participant, half the triads were

assigned to the ‘‘same’’ condition and the other half to the ‘‘different’’ condition.

For each participant, each triad was used to generate two image pairs. One of the image

pairs (the alignable pair) was constructed by using the same original image for both of the

images in the pair; thus, these images were identical except for the target shape, which

could be same or different in color. The second image pair (the nonalignable pair) consisted

(A) (A’)

(B) (C)

Fig. 7. Sample stimuli from Experiment 3. Each of the geometric shapes (e.g., square, triangle, etc.) was

displayed using a different color. The target shape for this sample is a square. A–C represent the three images

that comprise a set. In this case A is used in the structurally alignable condition (A–A¢) and B and C are used in

the non-structurally aligned condition.
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of the other two images. There were therefore three possible ways in which the two image

pairs could be constructed from each triad. This was counterbalanced across participants.

4.1.3. Procedure
The experiment was presented by computer. Participants read the instructions, completed

a training phase, and were then presented with the experimental pairs. These pairs were pre-

sented in two blocks of equal length.

On each trial, participants were first presented with a black geometric shape (the precue)

that appeared in the center of the screen for three seconds. This was the target shape that

participants needed to respond to. For example, if the precue was a square, then the task was

to respond ‘‘same’’ if the two squares had the same color, and ‘‘different’’ if they did not.

The precue was followed by the presentation of the two images, on the left and right side of

the screen (with left and right randomly assigned). To avoid having the images at the same

height (which might inflate the alignment results), each image’s height on the screen was

also determined randomly. Each of the distinct geometric shapes to be presented was ran-

domly assigned a color from the palette. Within each pair, corresponding shapes (other than

the target shapes) were always the same color.

For each image pair, participants pressed ‘‘same’’ if the precued shape had the same color

in both images, and ‘‘different’’ if the precued shape had a different color. The ‘‘same’’

and ‘‘different’’ keys were the left and right control keys (with left-right assignment coun-

terbalanced). The time between the onset of presentation and the response was recorded.

4.2. Results and discussion

Four participants (6.67%) were dropped because they provided fewer than three correct

responses in one or more of the conditions. For the remaining participants, only correct

responses were used in the analysis. This excluded approximately 12% of the responses. For

each condition, the median RT scores for each participant were computed and used in the

analysis below. The means of these medians are shown in Fig. 8.

As predicted, participants were faster to make both ‘‘same’’ and ‘‘different’’ judg-

ments for components of alignable (structurally identical) pairs than for components of

nonalignable (structurally different) pairs. The results were analyzed using a repeated-

measures anova of Structural Similarity (alignable vs. nonalignable) · Response Type

(‘‘same’’ or ‘‘different’’). As predicted, there was a reliable main effect of alignability

(F(1,55) = 26.24, MSe = 0.13, p < .001, g2 = .023). There was no reliable effect of

response type (F(1,55) = .076, MSe = 0.18, n.s., g2 = 0) nor interaction (F(1,55) = .77,

MSe = 0.043, n.s., g2 = 0).

Planned comparisons revealed that the observed performance differences in response time

across structural similarity levels were reliable for both ‘‘same’’ and ‘‘different’’ responses

(one-tailed paired-samples t-tests: ‘‘same,’’ t(55) = 3.78, p < .001, d = .46; ‘‘different,’’

t(55) = 5.15, p < .001, d = .82).
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An item anova showed a reliable main effect of alignability (F(1,46) = 8.72,

MSe = 0.056, p < .01, g2 = .16) but no reliable effect of response type (F(1,46) = 1.86,

MSe = 0.026, n.s., g2 = .04) nor interaction (F(1,46) = .008, MSe = .025, n.s., g2 = 0).

The results of Experiment 3 again bear out the prediction that it is easier to identify

specific differences between images that are structurally alignable than between images that

are nonalignable. More important, it shows that the positive effect of alignability on the

speed of identifying a difference does not depend on a selection effect whereby the differ-

ence-identification response time for low-similarity pairs is elevated by having to choose

among several possible differences. Even when participants know exactly which difference

to focus on, they are faster to identify this difference when the overall arrays are readily

alignable.

5. Experiment 4

Experiments 1–2 demonstrated a dissociation in the effects of similarity on two seem-

ingly related tasks: detecting that two figures differ and identifying how they differ. Experi-

ment 3 showed that this dissociation cannot be attributed to a post-comparison difference in

the selection time required for the difference-identification task. Therefore, it seems that this

dissociation arises during the comparison process itself. These results are consistent with

structure-mapping theory and with its multistage process model, SME. In the difference-

identification task, participants are faster to respond to a similar pair than to a dissimilar one

because similar pairs are more easily aligned. In the S ⁄ D task, participants are faster to make

a ‘‘different’’ judgment for dissimilar pairs than for similar pairs because dissimilar pairs

can be rejected in the first stage.

Fig. 8. Results of Experiment 3 (error bars represent the standard error of the mean).
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In Experiment 4, we test more specific predictions of the process model—specifically,

predictions concerning the fine structure of similarity. Our studies so far have considered

only the overall similarity between two images. In Experiment 4, we distinguish object simi-

larity from relational similarity, based on prior evidence for their differential contributions

to mapping tasks (Gentner & Kurtz, 2006; Krawczyk, Holyoak, & Hummel, 2004; Markman

& Gentner, 1993). Object similarity refers to the number of matching objects (or more pre-

cisely, the number of matching object attributes) in the two images being compared. Rela-
tional similarity refers to the degree of relational overlap in the images, that is, whether the

images contain the same set of spatial relations between objects. In the previous experi-

ments, the number of object matches and the relational overlap of the images were strongly

correlated. High-similarity pairs were alike both in their relational structure (hence, aligna-

bility) and in their object features, and low-similarity pairs were low in both. While this cor-

relation is fairly typical in real-world experience (as well as in prior research on S ⁄ D
judgments), we must go beyond it to test our model’s predictions fully.

We can now sharpen the predictions for the two tasks. Given pairs that vary orthogonally

in object similarity and relational similarity (see Fig. 9), our model predicts that both object

(A) (B)

(C) (D)

(E) (F)

(G) (H)

Fig. 9. Sample stimuli from Experiment 4. Within each set, images in the same row represent high relational

similarity pairs; images in the same column represent low relational similarity pairs.
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similarity and relational similarity will affect the S ⁄ D task. That is, people can reject pairs

in the initial stage of matching either when there are few local matches between object attri-

butes or when there is little relational overlap. In contrast, the difference-identification task

will be affected only by relational similarity, and in the opposite direction. This is because

fast responses depend on aligning the two images to identify an alignable difference

between them; and alignment depends critically on relational similarity. In sum, the SME

process model predicts that high relational similarity (high alignability) will result in slower

S ⁄ D responding and faster difference-identification responding. High object similarity will

result in slower S ⁄ D responding and will not influence the speed of difference-identification.

5.1. Method

5.1.1. Participants
Fifty-three undergraduate students at Northwestern University participated, 20 in the S ⁄ D

condition and 33 in the difference identification condition.

5.1.2. Materials
The materials were 60 images, each composed of five distinct objects (silhouettes)

surrounded by a frame. Forty of the images (20 pairs) were designed such that in both images

the spatial organization of the objects was highly similar (e.g., the rows in Fig. 9). In half of

these pairs (the high object similarity pairs), four of the five objects were shared between

the two images, while in the other half (low object similarity pairs), only one of the five

objects was shared. The 20 pairs were then combined into groups of two pairs that differed

in their spatial organization8 but included the same objects (e.g., Fig. 9, A–B ⁄ C–D). This

allowed us to create all four kinds of pairs: pairs with high relational similarity (high-aligna-

ble pairs) and low object similarity (e.g., A–B and C–D); pairs with low relational similarity

(low-alignable pairs) and high object similarity (A–D and B–C); pairs high in both relational

and object similarity (E–F and G–H) and pairs low in both (A–C and B–D). The remaining

20 images were used to create 20 pairs of identical images (‘‘same’’ pairs).

The 20 pairs were then combined into groups of two pairs that differed in their spatial

organization but included the same objects. In half of these double pairs (low object similar-
ity pairs), the images comprising a pair differed on four of their five constituent objects

(e.g., Fig. 9, A–B ⁄ C–D). In the other half, the images in a pair differed on only one of their

five constituent objects (e.g., E–F ⁄ G–H). This allowed us to create the four kinds of pairs

defined by crossing relational similarity with object similarity: high relational similar-

ity ⁄ high object similarity (e.g., E–F and G–H), high relational similarity ⁄ low object similar-

ity (A–B and C–D), low relational similarity ⁄ high object similarity (E-G and F-H), and low

relational similarity ⁄ low object similarity) (A–C and B–D). The remaining 20 images were

used to create 20 pairs of identical images (‘‘same’’ pairs).

Each participant saw 20 ‘‘different’’ pairs: five from each of the four experimental condi-

tions (high relational similarity ⁄ high object similarity, high relational similarity ⁄ low object
similarity, low relational similarity ⁄ high object similarity, and low relational similarity ⁄ low
object similarity). In addition, participants in the S ⁄ D condition were also given the 20
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‘‘same’’ pairs. Finally, ten pairs (five identical, five non-identical) consisting of arrange-

ments of geometrical forms were used for training.

5.1.3. Procedure
The experiment was presented by computer. After completing a training phase, partici-

pants received the experimental pairs in two blocks of equal length. Each pair was preceded

by a half-second fixation period during which a crosshair appeared at the center of the

screen. The pair remained on the screen for 3000 ms.

In the S ⁄ D condition, participants judged whether the pair was identical or non-identical

by pressing the left or right control key (counterbalanced). In the difference-identification

condition, participants typed in a difference between the two images. When the participant

responded (by making a S ⁄ D judgment or by starting to type a difference) or 3000 ms

elapsed, the presented pair disappeared from the screen. In the difference-identification

condition, participants were then presented with a screen where they typed (or continued

typing) the difference they had identified. (Participants in the difference-identification task

were free to start typing at any time after the pair was presented; whenever they started, they

saw a screen displaying what they had typed.) As in Experiment 2, for both tasks, the time

between the onset of presentation of the pair and the response was recorded.

5.2. Results and discussion

Only correct ‘‘different’’ responses were used in the S ⁄ D analysis. This excluded approx-

imately 9% of the ‘‘different’’ responses. Trials in which participants viewed different

image pairs but responded ‘‘same’’ were also removed (approximately 17% of the responses

to different image pairs). The median response time for each condition was then computed

for each participant and each item. These medians provided the data for the statistical analy-

sis; their condition means are shown in Fig. 10.

As predicted, the two tasks showed different response patterns. In the S ⁄ D task, partici-

pants were faster to say ‘‘different’’ for pairs with low object similarity than for pairs with

high object similarity, and for pairs with low relational similarity (different spatial array)

than for pairs with high relational similarity. In contrast, participants in the difference-iden-

tification condition were faster to identify a difference for pairs with high relational similar-

ity than for those with low relational similarity. Their performance showed no effect of

object similarity. As in the prior studies, S ⁄ D judgments were much faster than difference-

identification (which took more than twice as long).

Repeated-measures anovas of Object Similarity · Relational Similarity for each task

bore out these patterns. There was a significant effect of relational similarity in both tasks

(though in opposite directions). (Same-different: F(1, 19) = 36.32, MSe = .057, p < .01,

g2 = .23; Difference-identification: F(1, 32) = 7.18, MSe = .25, p < .05, g2 = .028.) How-

ever, object similarity only affected performance in the S ⁄ D task. (Same-different:

F(1, 19) = 48.07, MSe = .022, p < .01, g2 = 0.12; Difference-identification: F(1, 32) = .12,

MSe = 0.17, n.s., g2 = 0.) Likewise, the two variables showed a statistically significant inter-

action for the S ⁄ D task, but not for the difference-identification task. (Same-different:
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F(1, 19) = 20.84, MSe = .037, p < .01, g2 = 085; Difference-identification: F(1, 32) = 2.5,

MSe = .14, n.s., g2 = .005.)

Item anovas for the two tasks showed similar patterns. There was a main effect of relational

similarity (again in opposite directions) on both tasks (Same-different: F(1, 36) = 26.22,

MSe = .023, p < .001, g2 = .21; Difference-identification: F(1, 36) = 19.29, MSe = .023,

p < .001, g2 = .34); and a main effect of object similarity only on the S ⁄ D task (Same-differ-

ent: F(1, 36) = 21.68, MSe = .023, p < .001, g2 = .42; Difference-identification:

F(1, 36) = .10, MSe = .023, n.s., g2 = .002). As in the subject analysis, the interaction was

significant only for participants in the S ⁄ D task (Same-different: F(1, 36) = 18.96,

MSe = .023, p < .001, g2 = .18; Difference-identification: F(1, 36) = .77, MSe = .023, n.s.,
g2 = .014).

5.2.1. Alignability ratings for differences produced
Finally, two raters blind to the hypothesis and similarity condition rated whether the differ-

ences identified by participants were alignable, using the same guidelines as for Experiment 1

(following Markman & Gentner, 1993). The two raters agreed on 84% of the differences and

only the differences on which the two raters agreed were used in the analysis below.

As predicted, participants were more likely to produce alignable differences for pairs with

high relational similarity (47% of the time) than for pairs with low relational similarity

(15% of the time), v2(1) = 51.12, p < .001. For example, when comparing the high-aligna-

ble image pair E-F in Fig. 9 and 12 out of 17 participants (70%) produced an alignable

Fig. 10. Results of Experiment 4 (error bars represent the standard error of the mean).
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difference that contrasted the star in one image with the plus sign in the other (e.g., ‘‘Right

had star instead of a plus sign’’). In contrast, when comparing the low-alignable pair E-G,

only 4 out of 14 participants (29%) produced an alignable difference; not surprisingly, none

of these identified the star in one image and the plus sign in the other. This pattern is similar

to the pattern found in Experiment 1, as well as to prior findings with both pairs of concepts

(Gentner & Gunn, 2001; Gentner & Markman, 1994; Markman & Gentner, 1993) and pairs

of images (Markman & Gentner, 1996), in which participants were more likely to produce

alignable differences for highly alignable pairs9

5.2.2. Summary
These findings further bear out the predicted task dissociation whereby similarity facili-

tates fast responding in the difference-identification task and hampers it in the S ⁄ D task.

They also carry the findings to a new level of specificity, by delineating distinct effects of

object similarity and relational similarity. For the S ⁄ D task, high similarity—both object

similarity and relational similarity—is associated with slow responding, consistent with the

claim that pairs with very few early local matches can be rejected immediately. For the dif-

ference-identification task, high relational similarity (but not high object similarity) is asso-

ciated with fast responding, consistent with the claim that alignable differences pop out to

people only after the alignment process is complete.

6. Computational model

We now present a computational simulation of the two tasks, using SME to carry out the

comparison process. We focus on Experiment 4, which offers the most detailed set of find-

ings. We also simulated the results of Experiment 1 (see Appendix 1); however, this simula-

tion is less informative than that of Experiment 4, because in Experiment 1 relational

similarity and object similarity were varied together, while in Experiment 4 they were

varied orthogonally.

A key goal in our work on similarity and analogy is to escape the need for hand-coding

the input. The use of hand-coded representations of the input, as is common practice in

cognitive simulations, allows the researcher to tailor the representations to fit the program’s

capabilities (Gentner & Forbus, 2011; Hofstadter & Mitchell, 1994), with a concomitant loss

of credibility in the findings. To escape hand-coded representations, the input to the

simulation was created by an automatic encoding system for perceptual images called

CogSketch (Forbus, Usher, Lovett, Lockwood, & Wetzel, 2008; Lovett, Gentner, & Forbus,

2006).

CogSketch is a sketch understanding system that automatically encodes representations

of two-dimensional images. It can generate representations for sketches drawn on a tablet

by a user or (as in the present case) for images imported from PowerPoint. The representa-

tions produced by CogSketch include both object descriptions and relations between objects.

These include positional relations, which describe one object’s location relative to another,

and topological relations, which describe cases where one object intersects another or is
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located inside another. The representations used in this simulation also include configural

groupings of objects (e.g., Love, Rouder, & Wisniewski, 1999; Navon, 1977). Configural

groupings, computed based on colinearity and proximity, include rows of three objects or

pairs of adjacent objects. These groups provide a rough approximation of the salient config-

urations within the images.

6.1. Model implementation

The comparison process uses the SME (Falkenhainer et al., 1989; Forbus & Oblinger,

1990). Recall that SME implements Gentner’s (1983, 1989) structure-mapping theory as a

three-step, incremental process (see Fig. 2). First, it identifies all local identity matches

between expressions in the two representations. This is done without regard for consistency;

there are typically many mutually inconsistent matches. In stage 2, structural consistency is

enforced, and the local matches separate into internally consistent clusters (kernels). In stage 3,

the kernels are merged into a large, structurally consistent global mapping. This global

mapping—which constitutes the aligned structure between the two analogs—gives rise to

alignable differences (differences that occupy the same structural role in the two analogs).

When these processes run to completion, the model can both determine whether the two

items are the same or different and name a specific difference between them. However, for

very dissimilar stimuli, the model can abort the alignment process early, based on finding

relatively few initial local matches between the two items. This permits fast ‘‘different’’

responses for very low-similarity pairs.

We simulated the two tasks by running SME on the materials used with human partici-

pants. The questions of interest are (a) Do the similarity measures generated by SME corre-

late appropriately with human response times on the tasks? and (b) Does SME show the

same dissociation between the tasks as was found in the human data? For the difference-

identification task, according to the theory, a full alignment is required. We can gauge the

alignability of a pair simply by taking SME’s standard structural evaluation score (a

measure of similarity that takes into account structural overlap as well as featural matches)

for the global mapping.10 Recall that high-similarity pairs are characterized by high struc-

tural evaluations and by fast alignment times (because they generally require only a single

greedy merge pass). Thus, we should find that high structural evaluation scores predict fast

difference-identification responses. For the S ⁄ D task, the dominant factor in predicting tim-

ing is whether the alignment process can be aborted early, permitting very fast ‘‘different’’

responses. For this, we needed to devise a measure of initial local matches, as described

below. Thus, the prediction is that for low-similarity pairs, there will be many fewer initial

matches than for high-similarity pairs, permitting early termination and fast ‘‘different’’

responses for low-similarity pairs.

6.2. Simulation

We evaluated the model by running it directly on the materials used with human

participants, using the encodings automatically generated by CogSketch.
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6.2.1. Procedure
We ran the model on the same 40 pairs as were used in Experiment 411 The images were

imported directly into CogSketch as bitmaps from the same PowerPoint stimuli given to the

participants. CogSketch automatically constructed an object representation for each Power-

Point shape12 and encoded spatial relations (such as left of) and configural groupings apply-

ing to two or three shapes (such as row).

We considered two measures generated by SME for each pairing. Both measures were

normalized based on the sum of the sizes of the two representations:

Local object matches score: The number of local identity matches found by SME

between object attributes in the first stage of SME. This is a derived measure in which con-

sider only the contribution of objects to similarity in SME’s first stage.13

Mapping score: The structural evaluation score for global mappings computed by SME

between the complete representations. This score reflects the overall alignment of the two

images, which is chiefly determined by the degree of relational similarity.

The key question is whether SME’s patterns will match those of the human participants.

Recall that in Experiment 4, our participants showed distinct patterns of similarity effects

for the two tasks. For the S ⁄ D task, low similarity—either object similarity or relational sim-

ilarity—is associated with fast responding, consistent with the claim that fast ‘‘different’’

responses are possible whenever the first stage of SME’s comparison process reveals very

few initial matches. For the difference-identification task, high relational similarity (but not

high object similarity) is associated with fast responding. For this task, alignability is the

key factor, because alignable differences leap out only after the alignment process is

complete.

Thus, for the simulation to match human performance the results should be as follows:

(1) For the S ⁄ D task, both the local object matches score and the mapping score should

correlate positively with human response times, because fast ‘‘different’’ responses can be

made when either object similarity or relational similarity is low; (2) for the difference-iden-

tification task, SME’s mapping score—which reflects the degree to which the two images

are aligned—should correlate negatively with human response times (that is, high scores

should lead to fast response times). However, the object matches score should not correlate

with performance, reflecting the prediction that object similarity will (in general) not play a

role in difference identification.

6.2.2. Results
Fig. 11 provides scatterplots that plot the predictions of the model against the mean

response times from Experiment 4. We consider each of these predictions in turn. First, for

the S ⁄ D task, both mapping score and local object matches show a strong positive correla-

tion with response times (mapping score: r = .63, p < .01 local object matches: r = .59,

p < .01). This fits with the pattern that humans require more time to say ‘‘different’’ for

more similar pairs (both at the object level and at the relational level).

For the difference-identification task, as predicted, mapping score shows a strong nega-

tive correlation with response time: that is, a high structural alignment score is associated

with fast response times (r = ).54, p < .01). A further prediction is that we should see no
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correlation between the local object matches score and the difference-identification response

time. This correlation is nonsignificant (r = ).27, p = .09), producing the expected

dissociation.14 This fits with the pattern that noticing a specific difference in general requires

aligning the pair.

(A) (B)

(C) (D)

Fig. 11. Scatterplots of the response times in Experiment 4 plotted against the predictions of the model. Results

for the S ⁄ D task are shown in the top line (A and B), and for the difference-identification task in the bottom line

(C and D). (A) and (C) plot the results against SME’s local object matches score, (B) and (D) plot the results

against SME’s mapping score. The line in each plot shows the fitted regression line and the gray area around it

represents the 95% confidence interval.
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These results demonstrate that SME generates measures that correlate with human perfor-

mance on both similarity tasks. Furthermore, its measure of object similarity shows the

expected dissociation between the tasks: It correlates with performance on the S ⁄ D task, in

which object similarity matters, but not on the difference-identification task, in which object

similarity is far less important.

6.2.3. Further analyses
In the above analyses, we used SME’s mapping score as a measure of relational similarity

in the S ⁄ D task. However, this is an approximate measure, because the full structural evalua-

tion score is only computed at the end of the alignment and includes credit for depth of

structure as well as for sheer number of matches. To better approximate the number of local

relational matches in the initial stages of SME’s operation, we devised another measure.

Based on prior research suggesting that relational configurations—such as rows and col-

umns of objects—are encoded and matched early in perceptual similarity tasks (Love et al.,

1999), we computed the number of local matches between configural groupings of objects.

This configural matches score is the number of local matches at the first stage of SME

between configurations such as horizontal rows of objects or vertical pairs15 of objects.

Our prediction was that the configural matches score would correlate positively with

response time in the S ⁄ D task, because quick ‘‘different’’ responses are possible only when

the number of initial matches is low. This prediction was borne out (r = .62, p < .01).

Importantly, the configural matches score also correlated negatively with response times in

the difference-identification task (r = ).57, p < .01), consistent with the idea that configural

matches contribute to relational similarity.

6.2.4. Summary
SME captures the pattern shown by human participants, including the distinct effects of

object similarity and relational similarity. For the S ⁄ D task, the number of local matches in

the first stage (both relational and object attribute matches) correlates negatively with partic-

ipants’ response times. This is consistent with the finding that high similarity—both object

similarity and relational similarity—is associated with relatively slow S ⁄ D responding,

because pairs with many early local matches cannot be rejected in the first stage. For the

difference-identification task, high relational similarity (but not high object similarity) is

associated with fast responding, consistent with the claim that alignable differences pop out

to people only after the alignment process is complete.

7. General discussion

We tested the predictions of structure-mapping theory, and, more specifically, of the model of

comparison processing embodied in SME. In this model, comparison processing is accomplished

by a three-stage process of (a) identifying local matches; (b) sorting the initial set of matches into

structurally consistent kernels; and (c) combining the kernels into one or more large global

mappings. This model makes three predictions: (1) saying ‘‘different’’ in a same-different task
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should be fastest for low-similarity pairs; (2) identifying a specific difference should be fastest

for high-similarity pairs; and (3) the same-different task should require far less time than the dif-

ference-identification task. Thus, the two highly related difference-processing tasks examined

here should show radically different patterns of responding. While non-structural theories of sim-

ilarity, such as feature-set-intersection and mental distance models, can predict patterns (1) and

(3), they do not predict pattern (2) and its disassociation with (1).

In Experiment 1, we found evidence for all three predictions, using pairs of simple heral-

dic shield images. The pairs in Experiment 1 were constructed to differ in only one feature

for the high-similarity pairs, and in many features for the low-similarity pairs. In Experi-

ment 2, we generalized the findings to a more natural situation by using complex drawings

of plants, for which both high- and low-similarity pairs had many differences. Again, all

three predictions were borne out—evidence for the robustness of the phenomenon. How-

ever, nonstructural theories of similarity could still be maintained, by arguing that the disas-

sociation between patterns (1) and (2) is not inherent in the comparison process, but rather

stems from post-comparison choice processes. That is, it could be that the greater time to

identify a difference for low-similarity pairs simply results from the difficulty of choosing

which of the many potential differences to name. Experiment 3 was designed to rule out this

possibility. In that study, participants were precued as to which difference to report. Even

though participants knew in advance which shape to report on (same-color or different-

color), they still showed an advantage for alignable over nonalignable pairs. This difference

cannot be accounted for by post-comparison selection time, but it is predicted by the struc-

ture-mapping process model. Because detecting a specific difference is fastest when the

difference appears as an alignable difference, people will be faster in this task with pairs that

are easily aligned than with those that are not.

In Experiment 4, we went beyond the simple dichotomy between high- and low-similarity

and tested our predictions at a more fine-grained level. Structure-mapping makes a distinc-

tion between relational similarity—similarity between the patterns of relations in the two

items—and object similarity—similarity in the elements within the two items. This distinc-

tion is important because it is relational similarity that determines whether a pair can be

aligned. In Experiment 4, we independently varied object similarity and relational similar-

ity, and found the predicted pattern. First, as in the prior three studies, the two tasks showed

a reverse relation with similarity, with S ⁄ D responding slower for high similarity and differ-

ence identification faster for high similarity. More tellingly, we also found the predicted

effects of specific kinds of similarity. For the S ⁄ D task, low similarity—either object simi-

larity and ⁄ or relational similarity—led to fast responding, consistent with the claim that

pairs with very few early local matches can be rejected immediately. For the difference-

identification task, only high relational similarity led to fast responding, consistent with the

claim that a full alignment is required in order for alignable differences to pop out. Thus, we

must add a fourth pattern to the three noted above: Pattern (4) is that difference identifica-

tion is preferentially sensitive to relational similarity and not object similarity.

We verified that SME’s three-stage comparison process successfully simulates both

Experiment 1 (in Appendix 1) and Experiment 4. In both simulations, SME captured the

pattern of relatively rapid S ⁄ D responding that is fastest (at detecting difference) for highly
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dissimilar pairs; and relatively slower difference-identification responding that is fastest for

highly similar pairs. SME also captured the finding from Experiment 4, that S ⁄ D responding

is sensitive to any kind of local similarity—whether at the object level or at the relational

level—while difference identification is sensitive only to relational similarity. Importantly,

the representations used by SME were automatically generated by an independent sketch-

understanding system, Forbus et al.’s (2008) CogSketch; thus, the results do not arise from

tailoring the representations to fit our predictions.

These findings of a task disassociation are difficult to reconcile with nonstructural

accounts of representation and comparison, such as feature-set-intersection models and

mental distance models. Both of these predict a positive relation between the two tasks. In

featural models, the fewer the differences that exist between two objects, the harder it

should be both to detect that they are different and to identify a specific difference between

them. Likewise, in mental distance models, the fewer the dimensions of difference, and the

smaller the distance along a given dimension, the harder both tasks should be. Nonstructural

models also have no way to capture our fourth pattern that the speed of difference identifica-

tion depends specifically on relational similarity. Given the centrality of comparison

processes in human cognition, these findings add to the case for structured models of repre-

sentation (Gentner & Markman, 1995; Holyoak & Hummel, 2000; Jones & Love, 2007;

Markman & Dietrich, 2000).

In sum, our findings suggest that S ⁄ D judgments are qualitatively different from the identi-

fication of differences. More specifically, the alignability of the images plays a large role in

the identification of differences, but not in S ⁄ D judgments. This dissociation between the tasks

is best explained by positing structural comparison processes, as in structure-mapping theory.

8. Conclusions

Similarity comparison is fundamental to human cognition and perception. It is central in

recognition and categorization, in decision making, and in learning and transfer. While the

importance of finding commonalities is widely recognized in conceptual structure (e.g.,

Goldstone, 1994; Murphy, 2002; Smith & Medin, 1984), the role of differences—particularly

alignable differences—is also crucial to an understanding of category structure (Markman &

Wisniewski, 1997). Further, individual differences in propensity to attend to alignable differ-

ences may signal the degree to which people attend to conceptual structure rather than simply

attending to associative strength (Golonka & Estes, 2009). The present results support the

idea that human comparison processes are multistage computations that operate over

complex structured representations.

Notes

1. There are, of course, limits on this prediction. For example, if we compare a small
white pebble with a small black pebble plus an elephant, the first difference we’re
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likely to notice is elephant ⁄ no elephant—a nonalignable difference. But assuming

roughly comparable intrinsic salience, alignable differences will stand out.

2. In the current implementation of SME, this process is serial (but very fast). However,

we posit that it may proceed in parallel in the brain.

3. If the two largest kernels are similar in size, SME computes the global match twi-

ce—once starting from the largest kernel and one starting from the second-largest

kernel (see Forbus et al., 1994, for details).

4. When the largest kernel is sufficiently greater in its structural evaluation than the

next-largest, it is not necessary to compute a second merge.

5. The prediction that a larger match will be faster than a smaller match results from

the key starting assumption of structured representations; it is impossible to make

this prediction if one assumes independent-feature representations.

6. We chose to use the per-participant ⁄ condition median rather than the mean to reduce

the effect of reaction time outliers. For a discussion of this and other methods for

controlling outliers in reaction time data, see Ratcliff (1993).

7. We thank Mark Beeman and Steve Franconeri for suggesting this method.

8. We assume that the relational structure that participants notice and use in these

images will include configural patterns such as parallel rows of objects as well as

detailed relations between pairs of objects, such as Left-of(duck, star).
9. Considering only pairs with high relational similarity, a higher percentage of aligna-

ble differences was produced for pairs that were also high in object similarity than

for pairs that were low in object similarity (62% vs. 32%, v2(1) = 20.70, p < .001).

This is consistent with prior findings that literal similar matches are easier to align

than are purely relational matches (Gentner & Kurtz, 2006).

10. This metric takes into account not only the size of the global mapping but also its

depth.

11. We also simulated the results of Experiment 1 (Appendix 1). SME’s measures corre-

late as predicted with human response times. However, because relational similarity

and object similarity were conflated in Experiment 1 (that is, there were just two con-

ditions—high and low similarity), the measures generated by SME for the two tasks

were highly correlated.

12. Of the ten constituent object shapes used in the psychological experiment, two were

made up of multiple shapes in PowerPoint. These were simplified in PowerPoint so

that CogSketch would build only one shape for each of them. In addition, two of the

40 images used required slight touching up in PowerPoint.

13. The motivation for considering only the initial object-property matches is that evi-

dence from other studies indicates that in encoding the items, object properties are

encoded before relations (Lovett, Gentner, Forbus, & Sagi, 2009).

14. Because this correlation is marginally significant, we investigated further and found

that this correlation is due to variance that is almost entirely shared with the mapping

score. This is not the case for the correlation between local matches and the results

of the S ⁄ D task.
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15. A vertical (or horizontal) pair, such as Horizontal-pair (DS) differs from a binary

relation between two objects, such as Left-of (duck, star) in that it does not specify

the order of its arguments; instead, the arguments have separate part-of relations with

the group, as in Part-of (duck, DS).
16. To ensure that these changes did not alter the pattern of results, we replicated Experi-

ment 1 with a new group of human subjects using these simplified materials and

found the same pattern of results.
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Appendix 1

Simulation of Experiment 1

Experiment 1 used complex heraldic imagery. Because object similarity and relational

similarity covaried for this stimulus set, the pattern of human results shows a simple
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disassociation: (1) faster ‘‘different’’ responses in the S ⁄ D task for low-similarity pairs; and

(2) faster difference identification for high-similarity pairs.

Simulation

To facilitate the computer simulation of this experiment, we first simplified the stimuli.

The simplification involved replacing all patterns with solid colors and replacing objects

with geometric shapes (e.g., the dragon in Fig. 1, images C & D, was replaced with a light-

ning bolt)16.

We ran SME on the simplified materials using same 40 pairings as were used in Experi-

ment 1: 20 high-similarity and 20 low-similarity pairs of images in the style of heraldic

shields. The images were imported directly into CogSketch from PowerPoint. The measures

used were taken from SME’s normal operation (as in the Experiment 4 simulation). These

were:

Local object matches: The number of local matches found by SME between object attri-

butes only. This derived measure represents the object similarity of the stimuli.

Mapping score: The structural evaluation score for global mappings computed by SME

between the complete representations. This measure represents the alignability of the stimuli

and is a good approximation of relational similarity.

The predictions from structure-mapping theory are (1) For the S ⁄ D task, both low local

object matches and low mapping score should correlate with human performance, reflecting

the claim that any type of low similarity should allow people to quickly determine that the

images are different. (2) For the difference-identification task, SME’s mapping score should

correlate with human performance, since structure-mapping predicts that stimuli that share

more structure can be aligned more easily.

Results and discussion

We consider each of the predictions in turn. First, both the local object matches score and

the mapping score correlate positively with S ⁄ D response times (local object matches:

r = .39, p < .05; mapping score: r = .55, p < .01). This fits with the pattern that humans

require more time to say ‘‘different’’ for more similar pairs (both at the object level and at

the relational level).

Second, mapping score correlates negatively with response time in the difference-identifi-

cation (r = ).43, p < .01), matching the faster performance for high-similarity pairs. How-

ever, because similarity and alignability co-varied to a large degree in Experiment 1

(r = .78, p < .01), the local object matches score also correlates negatively with difference-

identification (r = ).39, p < .05).

Overall, the results of the simulation are as predicted for this simple stimulus set: High

values of either the mapping score or the local object matches score are positively correlated

with human response times in the S ⁄ D task, and negatively correlated with them in the

difference identification task. In Experiment 4, we distinguish relational similarity from

object similarity so as to test more fine-grained predictions of the model.
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